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Running economy (RE) is typically defined as the energy demand for a givenAbstract
velocity of submaximal running, and is determined by measuring the steady-state
consumption of oxygen (V̇O2) and the respiratory exchange ratio. Taking body
mass (BM) into consideration, runners with good RE use less energy and therefore
less oxygen than runners with poor RE at the same velocity. There is a strong
association between RE and distance running performance, with RE being a better
predictor of performance than maximal oxygen uptake (V̇O2max) in elite runners
who have a similar V̇O2max.

RE is traditionally measured by running on a treadmill in standard laboratory
conditions, and, although this is not the same as overground running, it gives a
good indication of how economical a runner is and how RE changes over time. In
order to determine whether changes in RE are real or not, careful standardisation
of footwear, time of test and nutritional status are required to limit typical error of
measurement. Under controlled conditions, RE is a stable test capable of detecting



466 Saunders et al.

relatively small changes elicited by training or other interventions. When tracking
RE between or within groups it is important to account for BM. As V̇O2 during
submaximal exercise does not, in general, increase linearly with BM, reporting
RE with respect to the 0.75 power of BM has been recommended.

A number of physiological and biomechanical factors appear to influence RE
in highly trained or elite runners. These include metabolic adaptations within the
muscle such as increased mitochondria and oxidative enzymes, the ability of the
muscles to store and release elastic energy by increasing the stiffness of the
muscles, and more efficient mechanics leading to less energy wasted on braking
forces and excessive vertical oscillation.

Interventions to improve RE are constantly sought after by athletes, coaches
and sport scientists. Two interventions that have received recent widespread
attention are strength training and altitude training. Strength training allows the
muscles to utilise more elastic energy and reduce the amount of energy wasted in
braking forces. Altitude exposure enhances discrete metabolic aspects of skeletal
muscle, which facilitate more efficient use of oxygen.

The importance of RE to successful distance running is well established, and
future research should focus on identifying methods to improve RE. Interventions
that are easily incorporated into an athlete’s training are desirable.

The ability to metabolise energy aerobically is a Efficient utilisation of available energy facilitates
prerequisite for superior endurance performance.[1-3] optimum performance in any endurance running
In competitive distance running, successful per- event. Efficiency refers to the ratio of work done to
formance has been correlated to an athlete’s maxi- energy expended.[8] RE is represented by the energy
mal oxygen uptake (V̇O2max).[1,3-5] Performance in expenditure and expressed as the submaximal V̇O2
endurance events is directly influenced by altera- at a given running velocity.[4,9-11] The energy cost of
tions in the availability of oxygen, carbohydrate and running reflects the sum of both aerobic and anaer-
fat, and the density of muscle mitochondria.[6] obic metabolism, and the aerobic demand (measured
V̇O2max is influenced by a variety of factors includ- by the V̇O2 in L/min) at a given speed does not
ing muscle capillary density, haemoglobin mass, necessarily account for the total energy cost of run-
stroke volume, aerobic enzyme activity and muscle ning, which is measured in joules or kilojoules of
fibre type composition.[6] Although a high V̇O2max work done.[8] Runners with good RE use less oxygen
is required for distance running, other physiological than runners with poor RE at the same steady-state
and performance factors are important in determin- speed.[12] Figure 1 illustrates two international cali-
ing endurance capacity.[4] These factors depend on bre 10km runners measured in our laboratory: both
the race distance and include the percentage of runners had a similar V̇O2max, with the more effi-
V̇O2max a runner can sustain without accumulating cient runner (better RE) having a 10km time of 1
lactic acid, the ability to utilise fat as a fuel at high minute faster than the less efficient runner. The
work rates and thereby ‘spare’ carbohydrate and steady-state condition is verified by the maintenance
running at race pace with relatively low energy of blood lactate concentration (La) at baseline
expenditure (i.e. good running economy [RE]). The levels[13] and a respiratory exchange ratio (RER)
velocity associated with attainment of V̇O2max <1.[4] RE can vary among runners with a similar
(vV̇O2max) and the velocity at the onset of blood V̇O2max by as much as 30%.[8] In elite or near-elite
lactate accumulation are good indicators of distance runners with a similar V̇O2max, RE is a better predic-
running performance.[7] tor of performance than V̇O2max.[5,14] Accordingly, it
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tively eliminated during indoor running; however,
transferring treadmill data to overground running
requires caution.[8,17] Pugh[18] estimated that 8% of
the total energy cost of middle-distance track run-
ning (5000m) is expended overcoming air resis-
tance. Another study estimated the amount of ener-
gy required to overcome air resistance was 4% for
middle-distance runners and 2% for marathon run-
ners.[19] When a tailwind velocity is equal to running
velocity, overground V̇O2 was equivalent to tread-
mill V̇O2.[17] Differences between overground run-
ning and treadmill running are more likely to be
observed as speed increases and the effect of air
resistance becomes more pronounced.[8] Hagerman
et al.[20] reported lower submaximal V̇O2 values at
an altitude where the air is less dense than at sea
level. Using a 14.5 km/h headwind in order to simu-
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Fig. 1. Comparison of oxygen uptake (V̇O2) [mL/kg/min] in two
international calibre 10km runners, one with good economy (sub-
ject 1) and the other with poor economy (subject 2) [Saunders et al.
unpublished data, 2003]. Max = maximum.

late outdoor conditions, Costill and Fox[21] reported
a 15% difference in submaximal V̇O2 between con-follows that substantial improvements in RE could
trol conditions (no wind) and a simulated headwind.facilitate improved performance in distance runners.
It is clear that running on the treadmill is not theIn summary, the relationship between RE and per-
same as running over ground, where wind resistanceformance is well documented, with many indepen-
affects V̇O2. Furthermore, the technique of runningdent reports demonstrating a strong relationship be-
on a treadmill is different to running over groundtween RE and distance running perform-
where the hamstrings are used to a greater extent toance.[1,4,5,10,15,16]

produce propulsive forces. However, we can beThe purposes of this review are to examine the
confident that RE measured on a treadmill is highlyvalidity and reliability of currently used tests for
correlated to RE over ground. It is reasonable, then,measuring RE, examine research relating to physio-

logical and biomechanical factors which influence to assume that interventions affecting RE on the
RE, describe interventions that have attempted to treadmill will similarly affect RE over ground. From
improve RE, and discuss potential areas for future work in our laboratory, we have determined that
research directions in this field. reliable measures of RE need to be obtained at

speeds eliciting ≤85% of V̇O2max in highly trained
distance runners.1. Measurement of Running

Economy (RE) Recent technological advances have allowed
measurement of overground RE using portable oxy-
gen analysers. The K4 Cosmed analyser (Rome,1.1 Treadmill RE Compared with
Italy) described by Hausswirth et al.[22] is a light-Outdoor Running
weight, accurate, telemetric system that enables
measurement of energy requirements during bothMeasures of RE have typically been determined
submaximal and maximal exercise in the laboratoryin the laboratory by having the athlete run on a
or field. The K4 system allows continuous recordingmotorised treadmill. This practice partially over-
of V̇O2 during incremental progressive field tests tocomes many of the difficulties in obtaining reliable
accurately determine an athlete’s ventilatory charac-metabolic data in the field (i.e. during training and
teristics. The validity of the K4 Cosmed telemetriccompetition).[14] Air and wind resistance are effec-
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system was demonstrated against a metabolic mea- vidual RE in 17 male runners following 30–60 min-
surement cart (CPX, Medical Graphics, Saint-Paul, utes of treadmill familiarisation at the same time of
Minnesota, USA) during both submaximal and max- the day, in the same pair of shoes and in a non-
imal exercise, with no difference observed between fatigued state.[32] There was a high day-to-day corre-
the two oxygen analysis systems.[22] Recent research lation in RE (r = 0.95) with a mean coefficient of
has utilised the K4 portable oxygen analyser to variation (CV) of 1.3%. Pereira et al.[34] reported a
measure V̇O2 in various intervention studies on CV of 1.5% for RE in five trained male runners by
moderate to highly trained distance runners.[23-26] It careful control of extrinsic factors such as time of
appears that overground RE can be measured in a testing, diet, footwear and relative workload.
natural field setting with the K4 Cosmed telemetric Pereira and Freedson[33] note that previous stud-
system and similar devices, although careful atten- ies investigating intra-individual variation in RE
tion must be made to ensure post-testing results are have not compared intra-individual variability be-
not influenced by changes in environmental condi- tween runners differing in training level. These in-
tions. vestigators used seven highly trained males

(V̇O2max; 69.1 mL/kg/min) and eight moderately
trained males (V̇O2max 58.3 mL/kg/min) with test-1.2 Reliability of RE
ing being carried out for 3 weeks at ~88% of the

Consideration of the typical intra-individual vari- velocity associated with the individual lactate
ation in RE is essential when investigating the effec- threshold (LT). Time of day, day of the week, diet
tiveness of interventions aimed at modifying RE. As and footwear were controlled within each subject
has been previously noted,[14] small sample sizes across the three tests. CVs of 1.8% for the highly
and omission of the typical error (TE) restricts the trained group and 2.0% for the moderately trained
degree to which meaningful conclusions on the im- group (average 1.9%) were reported.[33] After ac-
pact an intervention has on RE can be drawn. In counting for technical error, biological variation ac-
order to interpret the practical significance of vari- counted for ~94% of the intra-individual variation in
ous interventions aimed at improving RE, a state- RE. The results suggest that workloads below LT
ment of the test-retest reliability or TE should be may permit more stable measures of RE to be ob-
provided. In research settings, a rigorous experi- tained. Brisswalter and Legros[28] demonstrated that
mental design is necessary to control confounding RE, respiratory measures and stride rate were stable
variables and to permit a valid determination of the measures for assessing energy cost associated with
impact of interventions on RE. Daniels et al.[27] running in elite middle-distance runners. The au-
observed an 11% variation in the stability of RE in thors reported a variation of 4.7% in RE in ten elite
ten trained males running at 16 km/h, even after 800m runners (V̇O2max, 68 mL/kg/min; mean 800m
controlling for variability associated with footwear time, 1:49 minutes). In a study of elite French dis-
and test equipment. Well controlled reliability stud- tance runners, subjects were tested three times over
ies measuring RE show intra-individual variations a 12-month period to determine the stability of RE.
between 1.5–5%,[28-34] indicating that test-retest in- RE was stable over the 12-month period despite an
tra-individual results are relatively stable. improvement in V̇O2max. The authors concluded

Factors such as treadmill running experience, that in elite distance runners, RE is a difficult param-
footwear, time of day of testing, prior training activ- eter to improve.[35]

ity and nutritional status may affect intra-individual
variation in RE.[29] Morgan[29] investigated 16 male 1.3 Correcting RE for Body Mass
subjects who completed two 10-minute RE tests at
the same time of the day within a 4-day period, RE can be expressed as a ratio of a runners’ V̇O2
wearing the same pair of shoes. The intra-individual (L/min) divided by their body mass (BM) in kilo-
RE was 1.6%. Another study examined intra-indi- grams.[36] However, when comparing individuals or
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groups who differ in BM this expression may induce finding to the extra muscular effort required to pro-
vide cushioning if the shoe itself does not provideerror because submaximal V̇O2 during running does
adequate shock absorption.not increase proportionately to BM.[37] In animals,

the oxygen cost of running does not increase propor-
tionately to BM[38] and in humans, the V̇O2 per 2. RE and Performance
kilogram of BM is higher in children than

The relationship between RE and performance isadults.[8,39-50] Bergh et al.[37] suggests that, in
well documented. Early research comparing elitehumans, the higher submaximal V̇O2 observed in
American distance runners (V̇O2max 79 mL/kg/min)children relates to differences in body size and not
with good distance runners (V̇O2max; 69.2 mL/kg/merely growth and maturation. Sjodin and
min), indicated that the elite runners had better RESvedenhag[51] concur with this, and suggest that the
than good runners. When expressed as a percentageimproved RE measured in relation to BM, observed
of V̇O2max this difference in RE was magnified,in adolescent boys during growth, may largely be
with the elite runners working at a lower percentageattributable to its measurement of V̇O2 per kilogram
of their V̇O2max.[16] Di Prampero et al.[15] stated thatof BM.
a 5% increase in RE induced an approximately 3.8%

Theory associated with elastic components of
increase in distance running performance. As an

muscle and connective tissue estimates V̇O2 to be
example of the relationship between RE and per-

proportional to the 0.75 power of BM.[52] Bergh et
formance, a case study of American mile record

al.[37] suggested that submaximal V̇O2 and V̇O2max holder Steve Scott, reported that during a 6-month
measures during running are better related to period of training, Scott improved his V̇O2max by
BM–0.66 or BM–0.75 than BM–1. Furthermore, sever- 3.8% (74.4 to 77.2 mL/kg/min).[8] During the same
al studies[40,53,54] have shown an inverse relationship period there was a 6.6% improvement in RE (48.5 to
between BM and submaximal V̇O2/kg, providing 45.3 mL/kg/min) at a running velocity of 16 km/h.
further support that V̇O2 reported as mL/kg/min The combined improvement of an increased
may provide misleading comparative results.[37,51]

V̇O2max and a better RE reduced the relative intensi-
Another factor affecting RE is the pattern of ty of running at 16 km/h by 10.0% (65.1% to 58.6%

distribution of mass in the body. Carrying mass of V̇O2max) and was associated with improved per-
distally increases the aerobic demand of running to a formance during this period.[10]

greater extent than carrying mass closer to the centre Svedenhag and Sjodin[60] observed variations in
of mass.[55-58] Aerobic demand is increased by 1% RE and performance in elite distance runners
for every extra kilogram carried on the trunk, how- (V̇O2max 75 mL/kg/min) who undertook alternating
ever, when the mass was carried in the shoes, aero- sessions of slow distance, uphill and interval train-
bic demand increased by 10% for every additional ing over a 22-month period. Athletes significantly
kilogram.[58] Jones et al.[56] found an average in- reduced their V̇O2 at 15 and 20 km/h accompanied
crease in V̇O2 of 4.5% per kilogram of load carried by enhanced performances over 5000m. However,
on the feet when running at 12 km/h. Another study not all studies have demonstrated a significant rela-
investigated the effect of carrying mass on either the tionship between RE and performance. Williams
thighs or feet and reported a 7% per kilogram in- and Cavanagh[54] failed to identify a significant rela-
crease in V̇O2 when the mass was carried on the tionship between RE at 13 km/h and 10km perform-
thigh compared with 14% per kilogram increase in ance (~35 minutes) in a group of 16 runners. The
V̇O2 when carried on the feet.[57] The cushioning of percentage of slow-twitch muscle fibres and the
shoes also affects RE, with an approximate 2.8% runners V̇O2max correlated best with 10km perform-
energy saving realised for treadmill running in well ance. Conley and Krahenbuhl[4] showed that RE was
cushioned shoes compared with poorly cushioned a good predictor of performance in runners of com-
shoes of similar mass.[59] The authors attributed this parable ability. In that study, 12 highly trained male
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Fig. 2. Factors affecting running economy.

distance runners (V̇O2max ~72 mL/min and 10km their V̇O2max but with similar La as the Caucasian
runners.performance ~32 minutes) were tested 3–6 days

These studies indicate that improving athletes REafter they had competed in a 10km race. There were
is related to improvements in distance running per-significant correlations between submaximal V̇O2
formance. RE is likely to be influenced by a numberand performance at running speeds of 14, 16 and 18
of factors (figure 2) and any intervention (training,km/h. Some 65% of the variation in race perform-
altitude, heat) that can reduce the oxygen cost over aance could be attributed to differences in RE, with
range of running velocities will conceivably lead tothe more economical runners performing the best.
enhanced performance.The more economical runners were able to run at a

lower percentage of their V̇O2max, resulting in lower 3. Physiological Factors Affecting RE
La at a given speed. The latter factor is closely

Fluctuations in physiological factors such as coreassociated with the pace a runner is able to maintain
temperature (CTemp), heart rate (HR), ventilationfor races >15 minutes.[61] These data also provide
(VE) and La, may be associated with changes in REevidence that RE at slower speeds are useful in
during competition.[14,63-65] Thomas et al.[12] investi-predicting performance in races at faster speeds.
gated the effect of a simulated 5km race on RE, VE,

Weston et al.[62] investigated the RE and perform- CTemp, La and HR. RE was determined using a
ance of eight African (Kenyan) and eight Caucasian constant treadmill speed eliciting 80–85% of the
distance runners. The Kenyan runners had similar athletes V̇O2max. RE decreased significantly and
10km race performance to the Caucasian group, VE, CTemp, La and HR all increased significantly
despite having a 13% lower V̇O2max. The RE of the from the beginning to the end of the 5km run. The
Kenyan runners was 5% better than the Caucasian increased VE was the only factor that correlated
group, and when RE was normalised to BM–0.66 the moderately with the decrease in RE (r = 0.64; p <
Kenyans had an 8% better RE. The Kenyan runners 0.05), indicating a greater oxygen cost was associat-
also completed the 10km at a higher percentage of ed with the increase in VE. A higher CTemp increases
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V̇O2 at a given speed.[66-69] Increases in the metabol- invoke improvements in RE, a smaller disturbance
in homeostasis and slower utilisation of muscle gly-ic cost from augmented circulation, VE and sweating
cogen in the working musculature.[86] Daniels andare the major factors that increase submaximal V̇O2
Daniels[87] found that 800/1500m specialists wereand decrease RE.[68] In contrast, Rowell et al.[70]

more economical than marathon runners at veloci-stated that the mechanical efficiency of muscle in-
ties above 19 km/h, yet were less economical thancreases when CTemp is mildly elevated, reducing
marathon runners at slower speeds. Without a mea-V̇O2 by an amount equal to or greater than the
sure of the anaerobic contribution to total metabo-increase caused by changes in the cost of circulation,
lism, it is difficult to conclude that the 800/1500mVE and sweating. The composition of muscle fibres
specialists were more economical than the marathonalso seems to influence RE. It has been suggested
runners at the faster running velocities. Males werethat a higher percentage of slow-twitch muscle fib-
more economical than females at common speedsres is associated with better RE,[54,71,72] indicating
and relative intensities, but there was no differencethat metabolic activity or actual speed of contraction
in RE between males and females at typical raceof the muscle fibres may influence RE. Myocardial
intensities for each sex. Another study was unable toV̇O2 also constitutes a significant fraction of whole
detect significant differences in RE between trainedbody V̇O2 during exercise. Reductions in myocardi-
male and female distance runners across four run-al V̇O2 would result in improved RE from a more
ning velocities (12–16 km/h).[88]

efficient combination of HR and stroke volume (i.e.
Franch et al.[78] investigated the effects of threea reduction in HR and increase in stroke volume).[73]

types of intensive running training on RE in 36 male
Little consensus exists on the effects of training recreational runners (V̇O2max ~55 mL/kg/min). Sub-

and RE, largely as a consequence of limitations in jects were assigned to either continuous-distance
existing experimental designs such as small sample training, long-repetition training (4–6 × 4 minutes
sizes, lack of multiple economy measures to account run with 3 minutes rest) or short-repetition training
for normal intra-individual variation and failure to (30–40 × 15 seconds run with 15 seconds rest)
control for factors that influence RE (e.g. fatigue groups, and trained three times a week for 6
level, state of training, treadmill experience and weeks.[78] Runners undertaking continuous-distance
footwear). Some,[10,74-81] but not all[5,42,82] studies training and long-repetition training increased their
have reported improvements in RE after various RE by approximately 3% while short-repetition
training interventions. The initial level of fitness of training had little effect on RE (0.9% change), sug-
the subjects is an important factor when considering gesting that longer training is the best way to im-
whether training alters RE.[42] Numerous studies prove RE. Thomas et al.[65] suggests that those train-
indicate that trained subjects are more economical ing in an effort to improve RE need to concentrate
than untrained or less trained subjects[8,74,79,82-84] and on improving physiological characteristics such as
long-distance runners are more economical than HR, VE, La and CTemp regulation in order to de-
middle-distance runners.[8,16,84] The better RE in crease the energy demand associated with these
long distance runners is largely attributable to a parameters. Interval training may be beneficial to
lower vertical displacement of the runner’s centre of RE by reducing HR, VE and La at higher running
mass during running probably related to neuromus- speeds.[89]

cular adaptations induced by long, slow distance
training.[85] Endurance training leads to increases in 4. Biomechanical Factors Affecting RE
the morphology and functionality of skeletal muscle
mitochondria. An increase in the respiratory capaci- Running involves the conversion of muscular
ty of skeletal muscle permits trained runners to use forces translocated through complex movement pat-
less oxygen per mitochondrial respiratory chain for terns that utilise all the major muscle joints in the
a given submaximal running speed. These responses body. High performance running is reliant on skill
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Table I. Biomechanical factors related to better economy in runners[9]

Factor Description for better running economy

Height Average or slightly smaller than average for males and slightly greater than average for females

Ponderal index High index and ectomorphic or mesomorphic physique

Body fat Low percentage

Leg morphology Mass distributed closer to the hip joint

Pelvis Narrow

Feet Smaller than average

Shoes Lightweight but well cushioned shoes

Stride length Freely chosen over considerable training time

Kinematics Low vertical oscillation of body centre of mass

More acute knee angles during swing

Less range of motion but greater angular velocity of plantar flexion during toe-off

Arm motion that is not excessive

Faster rotation of shoulders in the transverse plane

Greater angular excursion of the hips and shoulders about the polar axis in the transverse plane

Kinetics Low peak ground reaction forces

Elastic energy Effective exploitation of stored elastic energy

Training Comprehensive training background

Running surface Intermediate compliance

and precise timing in which all movements have trast, Hausswirth et al.[97] showed that RE was im-
purpose and function.[9] Clearly, changing aspects of paired during the last 45 minutes of a marathon run
running mechanics that result in a runner using less on a treadmill, which was partly attributed to bi-
energy at any given speed is advantageous to per- omechanical factors such as a greater forward lean
formance.[90,91] Biomechanical characteristics asso- and a decrease in stride length. In a similar study,
ciated with improved RE are shown in table I.[9] The investigating the effects of running a marathon on
spring-mass model is an important factor associated RE, both submaximal V̇O2 and RER increased dur-
with RE, where the bounce of the body on the ing, and 2 hours after, the marathon. The impaired
ground is counteracted by the spring behaviour of RE observed could not be completely explained by
the support leg. During the eccentric phase of con- any changes observed in the mechanics, and was
tact, mechanical energy is stored in the muscles, attributed to the increasing physiological stresses
tendons and ligaments acting across joints. Recov- (e.g. heat accumulation and increased reliance of fat
ery during the concentric phase of the stored elastic utilisation) associated with running a marathon.[94]

energy reduces the energy expenditure. An oscillat- Thomas et al.[65] investigated the effects of a simu-
ing system is also characterised by a resonant fre- lated 5km race on RE and running mechanics of
quency. The resonant frequency is the frequency at trained female athletes. RE decreased during the
which a system freely vibrates after a mechanical 5km race, with athletes metabolising more oxygen
impulse.[92] RE was significantly correlated with at the same intensity. The changes in RE observed in
muscle stiffness (r = 0.80) and resonant frequency (r this study were not caused by any alterations in the
= 0.79) of the propulsive leg, with stiffer muscles mechanics of running, indicating that physiological
operating at lower resonant frequencies eliciting the factors are more important in reducing RE. Taken
best RE.[92] Several studies that have examined RE collectively, the weight of evidence from the ex-
and running mechanics after previously fatiguing isting literature suggests that if previously fatiguing
exercise and have reported little change in running exercise is to reduce RE, it is likely to be through
kinematics to explain decreases in RE.[93-96] In con- physiological rather than biomechanical factors.
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4.1 Anthropometry particular stride length/stride frequency for a given
running speed.[90]

Anthropometric characteristics such as height,
The first studies comparing the biomechanical

limb dimensions, body fat, as well as BM, have been
characteristics of elite and good runners indicated

addressed as potential influences on RE. While leg
that elite runners had slightly less vertical oscilla-

length contributes to angular inertia and the meta-
tion, were more symmetrical, and had better RE.[102]

bolic cost of moving the legs during running,[9] there
Williams and Cavanagh[103] found that better RE inseems little consensus on whether leg length is an
elite male distance runners was associated with aimportant factor in determining RE. In 31 male
more extended lower leg at foot strike, a lowerdistance runners with a 10km performance time of
vertical force peak and a longer contact time. More~35 minutes, a large variation in RE was observed in
economical runners tend to exhibit less arm move-the absence of any differences associated with seg-
ment, as measured by wrist excursion during themental lengths and masses.[54] In contrast, there is
stride.[54,104] Greater maximal plantar flexion veloc-evidence that leg mass and distribution of mass may
ity and greater horizontal heel velocity at foot con-influence RE. Williams and Cavanagh[54] reported a
tact are also associated with better RE in elite malemodest inverse relationship between BM and sub-
distance runners.[103] While these authors demon-maximal V̇O2/kg (r = –0.52) and between maximal
strated links with various kinematic parameters andthigh circumference and submaximal V̇O2/kg (r =
RE, it would appear that further research is war-–0.58), indicating that heavier than average runners
ranted to determine if changing a runner’s kinemat-use less oxygen per kilogram of BM. Myers and
ics induces an improvement in RE.Steudel[58] hypothesised that a runner with a propor-

tionally smaller amount of BM concentrated in the Recent research has comprehensively investigat-
extremities, particularly the legs, would perform ed biomechanical factors affecting RE.[105] V̇O2 at
less work moving their body segments during run- 12–13 different running speeds was compared with
ning, assuming that all other factors are unchanged kinematic data and three-dimensional ground reac-
(e.g. speed, BM, running style). tion forces (GRF) simultaneously with telemetric

EMG recordings of selected leg muscles. Joint mo-
ments and power were calculated using two-dimen-4.2 Kinematics and Kinetics
sional video analysis and the digitised segment coor-
dinates were transferred to a computer system. TheEarly research suggested that well trained run-
biomechanical parameters examined (angular dis-ners running at 14 and 16 km/h were most economi-
placements between the ankle, knee and hip joints;cal at the runner’s self-selected stride length, com-
joint angular velocities) were not good predictors ofpared with other pre-determined stride lengths.[98]

RE. However, force production during ground con-More recent work has confirmed that the aerobic
tact, coupled with the activation of the leg extensorsdemand of running at a given speed is lowest at a
during the pre-activity and braking phases and theirself-selected stride length.[90] Submaximal V̇O2 in-
coordination with longer-lasting activation of thecreases curvilinearly as stride length is either length-
hamstring muscles were of importance. The authorsened or shortened from that self-selected by the
pointed out that co-activation of the muscles aroundrunner.[90,98-101] Cavanagh and Williams[90] conclud-
the knee and ankle joints increases the joint stiff-ed that there is little need to dictate stride length for
ness, which appears to be related to better RE. Thewell trained athletes since they display near optimal
action of the hip extensors also becomes beneficialstride length. They postulated two mechanisms for
in this respect during ground contact.[105] Refiningthis phenomenon. Firstly, runners naturally acquire
mechanical elements such as stride length and fre-an optimal stride length and stride rate over time,
quency or the integration and timing of musclebased on perceived exertion. Secondly, runners may
activity to utilise the storage and release of elasticadapt physiologically through repeated training at a
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energy more effectively may lead to improvements the springs to maximise the exploitation of elastic
energy.[112-114]in RE.[9]

Williams and Cavanagh[54] provided substantial
4.3 Flexibilitysupport for the notion that more economical runners

have identifiable kinetic patterns in their running
Several studies contend that trunk and lower limb

mechanics. They observed that ground-support time
flexibility affects RE.[115-117] Godges et al.[117] ob-

and peak medial force correlated with submaximal served that moderately trained athletic college stu-
V̇O2 (r = 0.49 and 0.50, respectively). More eco- dents increased their RE at all speeds (40, 60 and
nomical runners had lower first peaks in the vertical 80% V̇O2max) with improved hip flexion and exten-
component of the GRF, smaller antero-posterior and sion. Improved hip flexibility, myofascial balance,
vertical peak forces, and a more predominant rear- and pelvic symmetry are thought to enhance neuro-
foot striking pattern.[54] The authors suggested that muscular balance and contraction, eliciting a lower
these characteristics affect muscular demands both V̇O2 at submaximal workloads. These findings are
before and during support, with forefoot strikers compatible with the general belief among runners
relying on musculature to assist with cushioning, and coaches that improved flexibility is desirable for
making them less economical. In contrast, rear foot increasing RE.[115]

strikers tend to rely on footwear and skeletal struc- In contrast, Gleim et al.[116] found that untrained
tures to take the load and are more economical.[54]

subjects who exhibited the lowest flexibility were
Well cushioned shoes reduce oxygen cost by up to the most economical when running at speeds rang-
2.8% over stiffer shoes of the same weight.[59,91]

ing from 3–11 km/h. This finding was explained by
However, it appears that there may be an individual- inflexibility in the transverse and frontal planes of
ly optimal degree of cushioning, as shoes with a the trunk and hip regions of the body, stabilising the
‘spring rate’ that compliments the muscle-tendon pelvis at the time of foot impact with the ground.
units contribute to the exploitation of stored elastic This has the effect of reducing both excessive range
energy.[9] Elastic energy stored during the eccentric of motion and metabolically expensive stabilising
contractions of running substantially contributes to muscular activity.[116] Elastic energy storage and
propulsion via release during subsequent contrac- return could be enhanced by having a tighter mus-
tions.[106-109]

culo-tendinous system.[118-120] Tightness in the mus-
It has been estimated that the Achilles tendon and cles and tendons could increase elastic storage and

tendons in the arch of the foot can store 35% and return of energy and reduce the submaximal V̇O2
17%, respectively, of the kinetic and potential ener- demand.
gy gained and dissipated in a step while running at Craib et al.[115] examined the relationship be-
moderate speeds.[110] Cavagna et al.[111] estimates tween RE and selected trunk and lower limb flexi-
that V̇O2 during running might be 30–40% higher bility in well trained male distance runners. Inflexi-
without contributions from elastic energy storage bility in the hip and calf regions was associated with
and return. At higher speeds, elastic recovery of better RE by minimising the need for muscle
energy prevails over the contractile machinery and stabilising activity and increasing the storage and
accounts for most of the work.[109,112] Elastic capaci- return of elastic energy. Another study found that
tance is influenced by the rate and magnitude of lower limb and trunk flexibility was negatively re-
stretch, the level of activation and stiffness of the lated to RE in international standard male distance
muscle tendon unit, muscle length at completion of runners, with a significant relationship between the
the stretch and the time lag between completion of sit-and-reach test score and submaximal V̇O2 at 16
the stretch and initiation of the succeeding concen- km/h.[121] Improved RE may reflect greater stability
tric contraction.[106,107,109] The major role of the mus- of the pelvis, a reduced requirement for additional
cles during running is to modulate the stiffness of muscular activity at foot strike, and a greater storage
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and return of elastic energy due to inflexibility of the In a well controlled study, Heise and Martin[123]

lower body.[121] A short and rapid stretch with a investigated the support requirements during foot
short coupling time and a high force at the end of contact of 16 moderately trained male runners
pre-stretch increases musculo-tendon elasticity.[105] (V̇O2max 62 mL/kg/min). Less economical runners
Kyrolainen et al.[105] found that stiffer muscles exhibited greater total and net vertical impulse, indi-
around the ankle and knee joints in the braking cating wasteful vertical motion. Correlations be-
phase of running increased force potentiation in the tween total vertical impulse and V̇O2, and net verti-
push-off phase. Having stiffer, more inflexible mus- cal impulse and V̇O2 were r = 0.62 and 0.60, respec-
cles in the legs and lower trunk could enhance RE tively. The combined influence of vertical GRF and
via increased energy from elastic storage and return, the time course of the force application explained
which has no additional oxygen cost. 38% of the inter-individual variability in RE. Al-

Taken collectively, the findings from these stud- though positive relationships were observed, other
ies suggest that there is an optimal level of flexibility GRF characteristics such as twisting, medial-lateral
whereby RE can benefit, although a certain degree or antero-posterior moments were not significantly
of muscle stiffness is also required to maximise correlated with submaximal V̇O2. Kyrolainen et
elastic energy storage and return in the trunk and al.[105] found that GRF and the rate of force produc-
legs. Runners should not abandon stretching as part tion increased with increasing running speed. They
of their training programmes, as a certain amount of suggested that increasing the pre-landing and brak-
flexibility is also required for optimal stride length ing activity of the leg extensor muscles might pre-
at high running speeds. vent unnecessary yielding of the runner during the

braking phase, helping them tolerate higher impact
4.4 Ground Reaction Forces loads. Pre-activation of these muscles is a preparato-

ry requirement for the enhancement of EMG activity
Fresh insight into the inter-individual variations during the braking phase and for the time of muscu-

in RE has come from comparative biology. Kram lar action with respect to the ground contact. Cen-
and Taylor[122] investigated the aerobic demand of trally programmed pre-landing activity appears to
running, hopping and trotting in a variety of animal regulate the landing stiffness and compensates for
species. They presented a simple inverse relation- local muscular failure. Pre-activity increases the
ship between aerobic demand and stance time inde-

sensitivity of the muscle spindle via enhanced alpha-
pendent of an animal’s size, indicating that the ener-

gamma co-activation potentiating stretch reflexes,
gy cost of running is determined by the cost of

and enhancing musculo-tendon stiffness, with a re-
supporting an animal’s mass and the time course of

sulting improvement in RE.[105]
generating force.[122] GRF reflect the functional and

The requirement to support BM is a major meta-mechanical requirements during stance. During
bolic cost of running.[124] Vertical GRF is the majorground contact, a runner activates muscles for the
determinant of the metabolic cost during run-purpose of stability and maintenance of forward
ning.[122,123,125] However, horizontal forces can sub-momentum. Excessive changes in momentum in the
stantially affect the metabolic cost of running, andvertical, antero-posterior and medial-lateral direc-
this is clearly observed when running on a windytions are wasteful in terms of metabolic energy
day.[124] Using a wind tunnel to apply a horizontalrequirements. Linear impulse measures the change
impeding force, Pugh[126] showed that the metabolicin momentum and quantifies the time course of the
cost of running increased with the square of head-GRF. Quantifying the magnitude of support and
wind velocity. Similarly, a harness to apply imped-forces during ground contact may explain at least in
ing forces increased the metabolic cost of runningpart the variability in RE among individuals of simi-
proportionally with an increase in externallar fitness.[123] Figure 3 depicts typical vertical and
work.[127-129] In a recent study, horizontal force washorizontal GRF for three steps of one subject.
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Fig. 3. Typical vertical (Fv) and horizontal (Fh) ground reaction forces for three steps of a single subject: for unloaded, 0% bodyweight
applied horizontal force (AHF) control condition (a), with an impeding force of 6% bodyweight AHF (b), and with an aiding force of 15%
bodyweight AHF (c) [reproduced from Chang and Kram,[124] with permission].

altered to both impede and assist runners using a The authors concluded that generating horizontal
pulley and rubber harness. At the two extreme con- force is metabolically more expensive per unit of
ditions, a 33% reduction in metabolic cost with a force than horizontal braking force during steady-
15% assisting force and a 30% increase in metabolic state running. It appears that the net resultant force
cost with a 6% impeding force were observed.[124] generated on the ground affects net muscle moments
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at each joint, as well as the force of each muscle triathletes (V̇O2max 69 mL/kg/min).[137] In this
crossing the joint. Therefore, it may not be appropri- study, 14 weeks of a HWT intervention elicited in
ate to consider vertical and horizontal GRF as inde- the endurance/strength group a significantly lower
pendent determinants of metabolic cost.[124] (11%) submaximal V̇O2 compared with the endur-

ance-only group, and a marginal enhancement in RE
5. Interventions to Improve RE in the endurance/strength group compared with their

pre-test.RE is influenced by many physiological and bi-
A specific type of strength training, known asomechanical variables; however, little research ex-

explosive-strength or plyometric training, invokesists with regard to improving RE and endurance
specific neural adaptations such as an increasedperformance by manipulation of these factors.[73]

activation of the motor units, with less muscle hy-Endurance training coupled with various other train-
pertrophy than typical heavy-resistance strengthing methods has been shown to improve RE in
training.[130,138,139] Plyometric training enhances theuntrained and moderately trained subjects, with
muscles’ ability to generate power by exaggeratingtrained runners having a better RE than their un-

trained or less trained counterparts.[8,74,79,82-84] Most the stretch-shorten cycle, using activities such as
studies demonstrating improvements in RE as a bounding, jumping and hopping.[140] Plyometric
result of training have used untrained or moderately training also has the potential to increase the stiff-
trained subjects, and improvement in fitness is a ness of the muscle-tendon system, which allows the
natural adaptation from endurance training. In high- body to store and utilise elastic energy more effec-
ly trained runners who already possess a well devel- tively.[141] Both these adaptations from plyometric
oped RE through years of endurance training, fur- training could conceivably improve RE by generat-
ther improvements in RE are seemingly difficult to ing more force from the muscles without a propor-
obtain. Three areas that have potential to improve tionate increase in metabolic energy requirement.
RE are strength training, altitude exposure and train- Paavolainen et al.[80] indicated that 9 weeks of ex-
ing in a warm to hot environment. plosive-strength training improved RE (8%) and

5km performance (3%) with no changes in V̇O2max
5.1 Strength Training in moderately trained runners. This group also mea-

sured neuromuscular characteristics using a 20mEndurance athletes must be able to sustain a high
sprint test, the distance covered in five alternateaverage running velocity for the duration of a race.
forward leg jumps and the corresponding contactThis emphasises the role of neuromuscular charac-
times (shorter times being better), as well as verticalteristics in voluntary and reflex neural activation,
and horizontal forces measured on a force platemuscle force and elasticity, running mechanics, and
during a constant-speed 200m run. The experimen-the anaerobic capacities in elite endurance run-
tal group improved in all of these tests comparedners.[80,130] The use of strength training is one inter-
with the control group.[80] These findings indicatevention thought to improve RE. Strength training
that explosive-strength training can improve RE andcan improve anaerobic characteristics such as the
performance as a consequence of enhanced neuro-ability to produce high La and the production of
muscular function. Similarly, recent studies haveshort contact times and fast forces.[131,132] Heavy
shown improvements in RE and performance after 6resistance training improves the endurance perform-
weeks of plyometric training in moderately trainedance of untrained subjects[133-135] and RE of moder-
subjects with no change in V̇O2max,[140,141] with theately trained female distance runners without con-
former study showing a 6% improvement in REcomitant changes in V̇O2max.[136] Recent work has
across three running speeds and a 3% increase inshown that a combination of heavy-weight training
3km run performance. The study by Spurrs et al.[141](HWT) and endurance training improved running
demonstrated improvement in muscle-tendon stiff-performance and enhanced RE in well trained
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ness and rate of force development during a seated livery and utilisation,[147,158,168,170] mechanisms that
calf-raise test, a finding which also supports the potentially could improve an athlete’s RE. Howev-
theory that improved RE from plyometrics is attrib- er, to date little research has been undertaken on the
utable to increased muscular power, and greater effects of altitude exposure on RE in highly trained
storage and return of elastic energy. To date, there is distance runners. Three investigations have reported
little research investigating the effects of plyometric no change in submaximal V̇O2 after a period of
training on elite (V̇O2max >70 mL/kg/min) distance altitude exposure,[145,156,164] while others have
runners. demonstrated improved RE after various stints of

hypoxic exposure.[155,171,172] Similarly, after a period
5.2 Altitude Exposure of altitude acclimatisation, sea-level V̇O2 during

submaximal cycling is either reduced[151,153,154,157] or
The effect of altitude training on endurance per- unchanged.[146,160] A tentative interpretation of these

formance has been researched extensively.[142-168]
findings is that altitude exposure for runners and

There is a widespread belief in the athletic commu- cyclists has no detrimental effects on economy and
nity that altitude training can enhance sea-level ath- there is good evidence to suggest that it may lead to
letic performance.[149,156,166] The mechanisms for improvements.
these improvements are not clear, but may include

In a study undertaken at sea level, RE of high-haematological changes (i.e. increased red cell
altitude residents was compared with that of sea-mass)[148,156] and local muscular adaptations (such as
level residents. V̇O2 was significantly lower in theimproved skeletal muscle buffer capacity).[151] The
highlanders, indicating greater economy.[154] Greentraditional approach to altitude training involves
et al.[153] examined the effects of a 21-day expeditionathletes living and training at a moderate
to altitude on submaximal cycling economy. Exper-(1500–3000m) natural altitude. A more recent ap-
ienced mountain climbers were recruited for thisproach is for athletes to live/sleep at altitude and
study and were based at 2160m, ascending totrain near sea level, the so-called live-high train-low
heights of 6194m. Three days after the expedition,(LHTL) method.[156] Because the geography of
subjects had a significantly lower V̇O2 during amany countries does not readily permit LHTL, a
40-minute submaximal cycling test (20 minutes atfurther refinement involves athletes living at simu-
60% V̇O2max and 20 minutes at 75% V̇O2max) thanlated altitude under normobaric conditions and
before the expedition. With resting V̇O2 unchangedtraining at, or close to, sea level.[161] In recent years,
pre- and post-acclimatisation, the authors concludedendurance athletes have utilised several new devices
that the altitude exposure was responsible for theand modalities to complement the LHTL approach.
improved economy, indicating net efficiency in-These modalities include: normobaric hypoxia via
creased by ~21% post-altitude acclimatisation, inde-nitrogen dilution, which allows athletes to undertake
pendent of the power output. A similar study ofLHTL; supplemental oxygen to simulate normoxic
mountain climbers showed an ~8% reduction inor hyperoxic conditions during exercise/sleep at nat-
V̇O2 during steady-state, two-legged kicking exer-ural altitude; and hypoxic sleeping devices which
cise, 3 days after a 21-day mountain climbing expe-permit athletes to sleep low and train high (LLTH).
dition to 6194m.[157] These studies involved cyclingIntermittent hypoxic exposure is another method
and two-legged kicking as the mode of exercise toinvolving brief periods of hypoxic exposure via a
measure economy. Evidence to suggest that altitudehypobaric chamber or inhalation of a hypoxic gas
exposure improves economy of highly trained ath-mixture to stimulate erythropoietin production. Data

to support these claims are minimal and inconclu- letes was demonstrated by Gore et al.[151] in a study
sive.[169] where six highly trained triathletes (V̇O2max 73 mL/

kg/min) improved cycling efficiency after 23 nightsAltitude acclimatisation results in both central
sleeping at a simulated altitude of 3000m, comparedand peripheral adaptations that improve oxygen de-
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with seven control athletes (V̇O2max 73 mL/kg/min) of the excitation and contraction process to perform
who trained the same but slept at normal altitude work at lower energy costs.[153] Roberts et al.[160]

(~600m). In the LHTL group, overall submaximal observed that 4300m altitude acclimatisation for 21
cycling efficiency improved significantly by 1%.[151] days decreased the reliance on fat as a fuel during
Although this group was highly trained and mainly rest and cycling at 50% V̇O2max. The authors sug-
consisted of triathletes who undertook a lot of run- gested that the shift towards increased dependence
ning training, cycling was still the mode of exercise on glucose metabolism and away from reliance on
used to determine improved economy, and further fatty acid consumption under conditions of acute
research is required to determine whether altitude and chronic hypoxia, is advantageous because glu-
training improves RE in highly trained runners. cose is a more efficient fuel in terms of generating

ATP per mole of oxygen. Another suggested im-Currently, three studies have demonstrated im-
provement in efficiency is the reduced energy re-proved economy in highly trained runners.[155,171,172]

quirement of one or more processes involved inKatayama and colleagues[171] have demonstrated on
excitation and contraction of the working muscles astwo occasions that intermittent hypoxic exposure
a result of metabolic adaptations from altitude accli-improves RE in well trained runners. The first study
matisation.[153] The reduction in by-product accumu-reported that simulated hypoxic exposure using in-
lation, such as adenosine diphosphate (ADP), inor-termittent hypobaria of 4500m 3 hours per day for
ganic phosphate and hydrogen that occur after alti-14 consecutive days improved RE and performance
tude acclimatisation, increases the amount of freein well trained runners (V̇O2max 68 mL/kg/min).
energy released from ATP hydrolysis and depressesAltitude exposure improved RE by 2.6% (14 km/h)
the need to maintain hydrolysis rates at pre-accli-and 3.3% (16 km/h), improved 3000m run time by
matised levels.[153,173]

1% and time to exhaustion on the treadmill by 2.7%.
The improvement in RE accounted for 37% of the Saltin et al.[174] investigated the physiological
improvement observed in the 3000m time trial.[155]

characteristics of Kenyan and Scandinavian runners.
More recently, it was demonstrated that 3 hours per The Kenyan runners lived and trained at altitude
day for 2 weeks of intermittent exposure to while the Scandinavian runners lived and trained at
normobaric hypoxia (12.3% oxygen) improved RE sea level. Kenyan runners did not accumulate La
by 2.6% (14 km/h) and 2.9% (16 km/h) in well during running until near very high or peak exercise
trained runners (V̇O2max 68 mL/kg/min). The im- intensities, and had much lower La both at altitude
proved RE was accompanied by a decreased HR and sea level at high relative exercise intensities.
(3.3% and 3.9% at 14 and 16 km/h, respectively) Similarly, Weston et al.[175] reported Kenyan runners
and a trend towards improved 3000m run time had higher resistance to fatigue when running at the
(1.3%, p = 0.06).[171] Another recent study demon- same percentage of peak treadmill velocity than
strated that 20 days of sleeping at simulated altitude Caucasian runners, despite similar V̇O2max values in
(2000–3100m) and training near sea level (600m) the two groups. Whilst these studies of runners
improved (3.3%, p = 0.005) RE in elite distance native to high altitude do not necessarily indicate the
runners (V̇O2max 73 mL/kg/min) in the absence of effect of training at altitude, it has been reported that
any changes in cardiorespiratory measures or red exercise after altitude training results in reduced La
cell mass.[172]

production at submaximal exercise, with lower
blood and muscle La being reported.[146,152,176] OnMechanisms that have been suggested to improve
this basis, altitude training allows athletes to main-economy after altitude exposure include: decreased
tain a given exercise intensity with lower accumula-cost of VE, a shift towards a greater glycolytic
tion of La during post-acclimatised sea-level exer-involvement of adenosine triphosphate (ATP) re-
cise. One of the mechanisms for lower plasma Lageneration, greater carbohydrate utilisation for oxi-

dative phosphorylation and/or an increased ability accumulation is an increase in skeletal muscle oxi-
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dative enzyme capacity[177] by shifting metabolism moderately trained distance runners, and some evi-
away from anaerobic to aerobic. Weston et al.[175] dence has been reported that HWT tended to im-
showed that Kenyan runners who live and train at prove RE in well trained triathletes. Training at
altitude have higher oxidative enzyme activities altitude or even sleeping at altitude has demonstrat-
than their Caucasian counterparts of a similar ed improved submaximal economy in trained moun-
V̇O2max. tain climbers, cyclists and triathletes. Both the use of

resistance training and altitude exposure appear to
5.3 Training in the Heat have potential in improving the RE of elite distance

runners, but further research into this area is still
The mildly elevated CTemp resulting from train-

required. Training in warm to hot conditions is
ing in warm to hot conditions may improve RE by

another intervention that has the potential to im-
increasing the efficiency of the working muscles. A

prove RE in distance runners, but again intervention
lower CTemp and an increased plasma volume, asso-

studies looking at the effect of training in the heat on
ciated with acute and chronic bouts of exercise in the

RE are limited, and further research is needed in this
heat, may attenuate the magnitude of the thermoreg-

area. Given that well designed resistance training,
ulatory response (increased ventilation, circulation

moderate altitude training and training in warm con-
and sweating) and reduce the increased energy re-

ditions have other benefits besides the potential to
quirements associated with heat stress.[178] Heat ac-

improve RE, it would seem sensible for runners to
climatisation, accompanied by training, can increase

employ these training methods where possible. An
plasma volume by up to 12%. The increase in plas-

important area of RE is the ability of the muscles to
ma volume assists in the maintenance of stroke

store and release elastic energy, as this energy re-
volume, which in turn minimises myocardial

quires no metabolic cost and could be a critical
work.[73] It follows that whole blood viscosity is

factor in improving RE. A method to quantify the
reduced from training in the heat, and a decreased

amount of elastic energy utilised has yet to be devel-
viscosity has positive effects on endurance perform-

oped, and this would provide a useful means of
ance.[179] Adaptations from training in warm to hot

determining the effectiveness of various training
conditions may also allow runners to run at any

interventions. More precision in measuring the con-
given speed with a lower HR and CTemp, with both

tribution of both metabolic and mechanical aspects
factors associated with improved RE.[65] These find-

of RE are required before we are able to gain better
ings support the premise that training in moderate

insight into how we can improve RE. Current work
heat may improve RE and performance at normal

aimed at developing better overground measure-
temperatures, although insufficient data precludes

ments of metabolic and mechanical work offers
drawing any definitive conclusions.

potential in improving our understanding of physio-
logical and training factors that affect RE in elite6. Conclusions and Future Directions
runners.

RE has been researched extensively over the last
4–5 decades and is considered a critical factor in the Acknowledgements
performance of elite distance runners. Factors that
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