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A B S T R A C T

THE PURPOSE OF THIS REVIEW IS

TWOFOLD: TO ELUCIDATE THE

UTILITY OF RESISTANCE TRAINING

FOR ENDURANCE ATHLETES, AND

PROVIDE THE PRACTITIONER WITH

EVIDENCED-BASED PERIODIZATION

STRATEGIES FOR CONCURRENT

STRENGTH AND ENDURANCE

TRAINING IN ATHLETIC POPULA-

TIONS. BOTH LOW-INTENSITY

EXERCISE ENDURANCE (LIEE) AND

HIGH-INTENSITY EXERCISE ENDUR-

ANCE (HIEE) HAVE BEEN SHOWN

TO IMPROVE AS A RESULT OF

MAXIMAL, HIGH FORCE, LOW

VELOCITY (HFLV) AND EXPLOSIVE,

LOW-FORCE, HIGH-VELOCITY

STRENGTH TRAINING. HFLV

STRENGTH TRAINING IS RECOM-

MENDED INITIALLY TO DEVELOP A

NEUROMUSCULAR BASE FOR

ENDURANCE ATHLETES WITH LIM-

ITED STRENGTH TRAINING EXPERI-

ENCE. A SEQUENCED APPROACH

TOSTRENGTHTRAINING INVOLVING

PHASES OF STRENGTH-

ENDURANCE, BASIC STRENGTH,

STRENGTH, AND POWER WILL

PROVIDE FURTHER ENHANCE-

MENTS IN LIEE AND HIEE FOR HIGH-

LEVEL ENDURANCE ATHLETES.

INTRODUCTION

C
onflicts among coaches exist
regarding the role of strength
training for endurance athletes

despite over 25 years of research

supporting its efficacy and applica-
tion (34-36,46,47,58,64,65,67,71,82).
Historically, resistance and endurance
training have been viewed as training
modalities at opposite ends of a contin-
uum with divergent adaptations (17,41).
In a recent meta-analysis, Wilson et al.
(92) reported an inverse relationship
between frequency and duration of
endurance training and subsequent
changes in hypertrophy, strength,
and power. Alternatively, strength
training has been shown to have
a positive effect on endurance perfor-
mance (46,49,51,65,73). Previous research
reports that concurrent strength and
endurance training can increase endur-
ance performance in high-level athletes
to a greater extent than endurance train-
ing alone (46,47,58,64,65,82). The inter-
ference effects between strength and
endurance training are outside the
scope of this review and have been
discussed extensively in previous stud-
ies (23,24,44,54,92). Endurance in
sport has been defined as the ability
to maintain or repeat a given force or
power output (80). Endurance training
can be further subdivided into low-
intensity exercise endurance (LIEE)
and high-intensity exercise endurance
(HIEE). LIEE can be defined as long-
duration endurance activities or the
ability to sustain or to repeat low-
intensity exercise. HIEE can be defined
as the ability to sustain or to repeat
high-intensity exercise and has been
associated with sustained activities of
#2 minutes (80). Competitive endur-
ance athletes need more than enhanced

aerobic power (V̇O2max) and LIEE
(34). Requirements for endurance ath-
letes should also include muscular
strength, anaerobic power, and HIEE
(34-36,46,58,68,82). Furthermore,
strength training has been shown to
positively influence both LIEE and
HIEE across a spectrum of endurance
events with greater effects observed in
HIEE (34,46,50,58,82,83).

Strength can be defined as the ability to
produce force (76). Strength is a skill,
which can be expressed in a magnitude
of 0–100% (80). In the current endur-
ance literature, 2 primary forms of
strength training have been investigated:
maximal, high-force, low-velocity,
strength training (HFLV) and explosive,
low-force, high-velocity strength train-
ing (LFHV). Previous studies have
examined the effectiveness of concurrent
endurance and circuit resistance train-
ing, but have demonstrated inferior re-
sults (49,73,84). Maximum strength can
be defined as the maximal amount of
force a muscle or group of muscles
can exert against an external resistance
and corresponds with the high-force,
low-velocity portion of the concentric
force-velocity relationship (15,81). The
term “explosive strength training” has
been used in previous studies in refer-
ence to low-force, high-velocity training
(0–60% 1 repetition maximum [RM]
loads) with maximal movement intent
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(59,69). The use of this terminology is
misleading, as explosive strength (alter-
natively defined as rate of force develop-
ment [RFD] or power output) (15,81),
can be developed across a continuum of
loads (0–100% 1RM) (19).

In fact, HFLV training has been shown
to elicit improvements in explosive abil-
ity (measured as power output) across
a larger spectrum of loads compared
with LFHV training in weak subjects
(20). The ability to improve power out-
put across a larger spectrum of loads,
among other reasons, likely explains
why HFLV and endurance training may
provide superior alterations in endurance
performance compared with concurrent
LFHV and endurance training for weak
endurance athletes (9,60,73). Thus,
explosive strength training performed
in previous research on endurance per-
formance is alternatively defined here
as LFHV training.

Previous research on untrained and rec-
reationally trained individuals has dem-
onstrated that concurrent strength and
endurance training can augment LIEE
and HIEE, aerobic power, maximal
strength, muscle morphology, and body
composition (27,28,32,34,42,47,49,71,85).
There is also research demonstrating
HFLV and LFHV strength training en-
hance performance in high-level endur-
ance athletes (58,59,61,64,66,72,73). In
a recent review of the literature, Beattie
et al. (10) reviewed results from 26 studies
examining the effects of strength training
on endurance performance of well-
trained athletes (10). Their findings
showed that strength training is effective
for improving movement economy,
velocity at V̇O2max (vV̇O2max), power
output at V̇O2max (wV̇O2max), maximal
anaerobic running test velocity (VMART),
and time trial performance, and suggested
that HFLV strength be developed before
LFHV strength in endurance athletes
with limited strength training experience.
Considering these findings, this article
focuses primarily on studies examining
the effects of HFLV and LFHV strength
training on HIEE and LIEE of moderate
to high-level endurance athletes. The
purpose of this review is twofold: to elu-
cidate the utility of resistance training for

endurance athletes, and provide the prac-
titioner with evidenced-based periodiza-
tion strategies for concurrent strength
and endurance training for competitive
endurance athletes.

EFFECTS OF STRENGTH TRAINING
ON ENDURANCE PERFORMANCE
AND UNDERLYING MECHANISMS

CONCURRENT HFLV STRENGTH
AND ENDURANCE TRAINING

In one of the earliest studies examining
the effects of concurrent strength and
endurance training on HIEE, Hickson
et al. (34) had moderately trained
(V̇O2max: 60 mL21$kg21$min21) run-
ners and cyclists perform 10 weeks of
endurance and HFLV strength training
(.80% 1RM). They reported improve-
ments in treadmill running (13%) and
ergometer biking (11%) to exhaustion
at maximal work rates (4–8 minutes)
and cycling to exhaustion (20%) at 80%
V̇O2max (33). In addition, there were no
statistical changes in muscle fiber cross-
sectional area or thigh girth, although
1RM leg strength increased on average
by 30%, which suggests primarily neural
contributions.

In a more recent investigation by
Aagaard et al. (2), highly trained
national team cyclists (V̇O2max: 71–75
mL21$kg21$min21) performed HFLV
strength training (mostly 5–6RM loads)
for 16 weeks concurrently with regular
endurance training. The strength and
endurance training group improved
average power output and total distance
covered in a 45-minute cycling test
(8%), whereas the endurance only
group did not. Concomitant increases
were found for maximal voluntary iso-
metric contraction (MVIC) of the knee
extensors (12%), peak RFD (20%),
mean power output in 5 minutes of
all-out cycling (3–4%), and mean power
output during a 45-minute time trial
(8%) with no changes in muscle fiber
area, capillarization, and V̇O2max in
the strength and endurance training
group (2). The superior LIEE perfor-
mance in the strength and endurance
training group may have been due to
a shift in vastus lateralis muscle fiber
type from type IIx to type IIa.

Increased MVIC as a result of strength
training may enhance HIEE and LIEE
by decreasing the relative external
resistance, which reduces the number
of motor units required to produce
a given amount of force (13). In addition,
improvements in RFD contributed to the
improved LIEE performance by reduc-
ing time to reach peak concentric forces
necessary to produce the desired move-
ment and increasing the length of the
eccentric phase lending to greater muscle
perfusion and longer capillary mean tran-
sit times (1,86).

Strength training has been reported to
increase musculotendinous unit stiffness
(21,43,51,87). This results in an enhanced
ability to store elastic energy in the series
and parallel elastic component during
eccentric muscle actions, which in turn
increases concentric muscle force. This
is thought to be one of the reasons
why improvements in running economy
(35,51,81), cycling economy (8,12,66,83),
and cross-country skiing economy
(35,36,58) have been observed after
a period of HFLV strength and endur-
ance training. However, not all studies
show improvements inmovement econ-
omy as a result of strength training
(2,9,14,45,46,64) possibly due to differ-
ences in training variables (e.g., mode,
volume-load, frequency, duration) and
subjects’ training status. For example,
elite athletes who already possess a high
level of efficiency may not further
improve movement economy with
strength training (64).

The superior performance changes with
heavier strength training may be attrib-
uted to greater increases in musculoten-
dinous unit stiffness, greater recruitment
of high-threshold motor units, and
greater capacity to store and release elas-
tic energy, which lead to a right and
upward shift in the force-velocity and
force-power relationships (58). This does
not preclude LFHV strength training for
endurance athletes because, although the
loads used are typically lighter, there are
notable improvements in RFD, which
has been linked to greater movement
economy and enhanced LIEE andHIEE
performance (59,72,85,88).
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Furthermore, an increase in musculo-
tendinous stiffness has a greater applica-
tion to running than cycling because of
the greater contribution of the stretch-
shortening cycle (69). In contrast,
strength training induced improve-
ments on cycling economy and perfor-
mance are more evident at the end of
long cycling tests. Rønnestad et al. (66)
found that cycling economy improved
more during the final hour of a 185-
minute cycling test as a result of HFLV
strength with endurance training (3 3
4–10RM, 2 d/wk for 12 weeks) com-
pared with endurance training alone
(66). They also reported reduced HR
and blood lactate concentrations dur-
ing the final hour in the strength-
trained group. In addition, the subjects
completed a 5-minute sprint at the end
of the 180 minutes during which the
strength-trained group improved average
power production, but the endurance on-
ly group did not. This “anaerobic reserve”
may have been due to increased contrac-
tile strength of type I fibers delaying the
contribution of the less economical type
II fibers, sparing them for the sprint finish
(69). The “anaerobic reserve” for late race
sprint performance may also be ex-
plained by the sparing of substrate stores
within a muscle. Goreham et al. (25) re-
ported that 12 weeks of HFLV strength
with endurance training (3 3 6–8RM,
3 d/wk for 12 weeks) resulted in greater
muscle phosphocreatine and glycogen
content, and lower lactate concentrations
at the end of a 30-minute cycle at 72%
V̇O2max compared with endurance train-
ing alone (25).

Previous research has shown that endur-
ance athletes who strength train with
loads .70% 1RM exhibit larger changes
in movement economy and endurance
performance than endurance athletes
who strength train with lighter loads
(36,48,73). Sedano et al. (73) reported
greater magnitudes of change in running
economy, countermovement jump
(CMJ) height, vV̇O2max, and 3-km
time trial performance after 12 weeks
of heavy strength training (.70%
1RM) compared with lighter strength
training (,40% 1RM) and a control
group (circuit training) in Spanish

national level runners (V̇O2max .65
mL21$kg21$min21) (73). Similarly,
Guglielmo et al. (26) found that after
only 4 weeks of concurrent running
and heavy strength training (3–5 sets
at 6RM loads), there were larger mag-
nitudes of change in running econ-
omy, 1RM strength, and CMJ height
compared with concurrent running
and lighter strength training (3–5 sets
at 12RM loads) in middle- and long-
distance runners (V̇O2max ;61.9
mL21$kg21$min21) who competed at
the regional and national level (26).
Mixed results have been reported for
effects of HFLV strength training on
cycling economy; however, there are
still improvements in LIEE and HIEE
performance (2,64,65,83). Furthermore,
previous findings suggest that HFLV
strength training may exhibit its effects
most prominently during high-intensity
bouts of endurance events (9,49,66),
although there is evidence to the con-
trary (23,45) (Table 1).

CONCURRENT LFHV STRENGTH
AND ENDURANCE TRAINING

LFHV strength training has been re-
ported to elicit improvements in HIEE
and LIEE performance (59,74,85);
however, research conclusions are
mixed (7,45,60) (Table 2). Paavolainen
et al. (59) found that LFHV strength
training (,40% 1RM) improved 5k run
time, running economy, VMART, 20-m
sprint speed, and distance covered on
a 5-jump test in male cross-country run-
ners (V̇O2max;64.4mL21$kg21$min21),
whereas no changes in these measures
were observed in the endurance only
group (59). The LFHVstrength training
involved various plyometric exercises
and short sprints (20–100 m), which
suggests that although the absolute bar-
bell loads during strength training ses-
sions were relatively light, the forces
placed on the musculoskeletal system
were much larger than to what the ath-
letes were previously accustomed.

Considering that gaining body mass is
a concern for endurance athletes, one
of the purported benefits of LFHV
strength training is the lower degree
of muscle hypertrophy compared with
HFLVstrength training (28,70), but still

being able to achieve increases in
strength. In addition, increased muscle
fiber cross-sectional area (CSA), maxi-
mal strength, and power output can be
diminished or fully blunted by concur-
rent strength and endurance training
with the degree of decrement depend-
ing on the mode, frequency, and dura-
tion of endurance training (2,14,34,42).
Rønnestad et al. (64) found that increased
CSA of the quadriceps muscle was asso-
ciated with increased peak power output
and cycling time trial performance after
combined heavy strength training
(twice/week, 3 3 4–10RM) and endur-
ance training inwell-trained cyclists with-
out a noticeable change in body mass
(64). Therefore, altering the strength to
bodymass ratio should bemore of a con-
cern for endurance athletes than body
mass alone. Furthermore, although in-
creases in “nonfunctional” hypertrophy
may be detrimental to performance
(3,86,91), increases in task specific
hypertrophymay be an important factor
in enhancing endurance performance,
as the typical ectomorphic endurance
athlete is unlikely to gain significant
amounts of hypertrophy through
strength training (89).

It has been suggested that LFHV
strength training may provide an addi-
tive effect to those elicited by HFLV
strength training on HIEE and LIEE
performance (85). Taipale et al. (85)
tested this hypothesis by dividing endur-
ance runners into 3 groups (LFHV,
HFLV, combination) and found no dif-
ferences between groups in measures of
strength (1RM), power (CMJ height),
and endurance performance (85). Con-
sidering there is a delay between when
a training stimulus is implemented and
the subsequent effects on perfor-
mance (90), a sequenced approach
may be more appropriate than trying
to improve strength, power, and endur-
ance simultaneously (15,81).

TRAINING THEORY

THE TRAINING PROCESS

The primary goals of any successful
training program are to reduce the likeli-
hood of injury and optimize perfor-
mance (81). Before designing a training

Strength and Conditioning Journal | www.nsca-scj.com 3



Table 1
Effects of concurrent HFLV strength training and endurance training on HIEE and LIEE

Study Athletes V̇O2max
(mL$kg21$min21)

Strength training HIEE LIEE

HFLV ST

Støren et al. (82) 17 M and F well-trained
runners

59.9 4 3 4RM, 33’s/wk for 8 wk — 21.3% increase in TE at MAS

Jackson et al. (39) 23 M and F cyclists with
.0.5 y competing

52 4 3 4RM, 33’s/wk for 10 wk NS for vV̇O2max NS for 30-km TT

Levin et al. (45) 14 M cyclists with .1 y
competing

62.8 4 3 5RM, 33’s/wk for 6 wk
(HFLV)

Control. ST for PP during
last 1-km sprint

NS for 30-km TT

Rønnestad et al.
(66)

20 M and F well-trained
cyclists

66.4 4–10RM, 23’s/wk for 12 wk 4.2% increase in Wmax 7% increase in MP during final
5 min of 185 min TT

Rønnestad et al.
(64)

20 M and F national
level cyclists

66.4 4–10RM, 23’s/wk for 12 wk 9.4% increase wingate PP,
4.3% increase in Wmax

6% increase in MP during 40-min
TT

Rønnestad et al.
(65)

12 M and F national
level cyclists

66.3 4–10RM, 23’s/wk for 25 wk 8% increase in Wmax,
increase wingate PP

—

Rønnestad et al.
(68)

17 M national/
international cross-
country skiers

66.2 3–5 3 4–8, 4–5 3 3–5RM, 23’s/
wk for 12 wk

— NS in 7.5-km rollerski TT

Rønnestad et al.
(67)

16 M national/
international cyclists

75.5 4–10RM, 23’s/wk for 10 wk,
13/wk for 15 wk

3% increase in Wmax,
earlier peak torque in
pedal stroke

6.5% increase in MP during
40 min TT

Sunde et al. (83) 13 M and F competitive
cyclists

61.1 4 3 4RM, 33’s/wk for 8 wk — 17.2% increase TE at MAP

Aagaard et al. (2) 14 M international level
cyclists

72.5 3 3 12, 3 3 10, 3 3 8, 2–3 3
6RM, 2–33’s/wk for 16 wk

— 8% increase in 45-min TT

Hoff et al. (36) 15 F cross-country
skiers, trained
8.8 h/wk

55.3 3 3 6RM (pulldowns), 33’s/wk
for 9 wk

— 137% increase in TE at Wmax

Hoff et al. (35) 19 M well-trained cross-
country skiers

69.4 33 6RM (pulldowns), 45 min/wk
for 8 wk

— 56% increase in TE at vV̇O2max

Østerås et al. (58) 19 M well-trained cross-
country skiers with
.5 y competing

61.2 33 6RM (pulldowns), 45 min/wk
for 9 wk

— 61% increase in TE at vV̇O2max
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program, however, the coach and the
athlete must understand that training is
a comprehensive process that harmo-
nizes a myriad of factors to foster athlete
development. Figure 1 depicts some of
these factors that affect athletic perfor-
mance. Therefore, the sport coaches,
strength and conditioning staff, and
sports medicine professionals each play
an important role within their own dis-
ciplines to contribute to an athlete’s
development. In addition, the manage-
ment of external stressors in the athlete’s
daily life is also an important component
in the optimization of performance.
To achieve this objective, however, train-
ing variables must be integrated in
a sequence over the course of the train-
ing process (79). The training process
is traditionally organized into 3 basic
levels: macrocycles, mesocycles, and
microcycles (79). A macrocycle is
a long-duration training cycle, typically
classified as 12months of training, which
are composed of multiple mesocycles.
Mesocycles aremoderate-length periods
of training, which can focus on develop-
ing specific fitness characteristics within
the macrocycle. Finally, each mesocycle
is composed of shorter training periods
referred to as microcycles (79). The tool
used to structure each phase of training
within a macrocycle is referred to as an
“annual training plan” (15).

More specifically, the annual plan is
a long-term training template used to
guide the coach and athlete in the
design and implementation of vari-
ous training phases (15). The annual
training plan can be separated into
phases: the general preparatory phase,
competitive phase, peak phase, and
active rest (Figure 2). For a detailed
description of each phase, the reader
is encouraged to examine the work of
Bompa and Haff (15).

PERIODIZATION

To reduce the likelihood of injury and
maximize athletic performance, strength
and conditioning professionals should
organize training adaptations in a logical
manner to minimize fatigue and high-
light technical and fitness characteristics
(e.g., strength, speed, endurance, etc.) at
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Table 2
Effects of concurrent LFHV strength training and endurance training on HIEE and LIEE

Study Athletes V̇O2max
(mL$kg21$min21)

Strength training HIEE LIEE

LFHV ST

Paavolainen
et al. (59)

18 M elite cross-
country runners

67.7 Jumps (unilateral and bilateral, drop, hurdle), short
sprints (20–100 m), 5–20 reps/set at 0–40% 1RM
for 9 wk

3.4% increase in 20-m
velocity, increased VMART

(P , 0.05)

5.1% increase in
5-km TT

Spurrs et al. (74) 17 M trained runners 57.6 Plyometric drills, progressed from 60–180
contacts, 23’s/wk for 6 wk

— 2.7% increase in
3-km TT

Mikkola et al.
(48)

25 M and F, high
school runners

62.1 Short sprints (30–150 m), 2–3 3 6–10, 33’s/wk
for 8 wk

NS 1.2% increase in
vV̇O2max, 3% increase in
VMART

—

Berryman et al.
(12)

28 M provincial
standard runners

56.9 Drop jumps and concentric squat jumps, 13/wk
for 8 wk

Increase in vV̇O2max
(ES: 0.43)

Increase in 3-km TT
(ES: 0.37)

Bastiaans et al.
(9)

14 M competitive
cyclists (.6 y)

— 2–4 3 30, squats, leg press/pull, step-ups,
midsection 33’s/wk for 9 wk

4.7% increase in Wmax 7.9% increase in
60 min TT

Mikkola et al.
(50)

19 M national cross-
country skiers

66.5 Double pole sprints (10 3 10 s), leg exercises 3 3
6–10, sprints, jumps, pogos, 33’s/wk for 8 wk

NS 2-km poling velocity,
1.4% increase in 30-m
double poling

—

Guglielmo et al.
(26)

16 M regional/
national level
runners

61.9 3–4 3 12RM, 23’s/wk for 4 wk 1% increase in vV̇O2max —

Sedano et al.
(73)

18 M national level
runners

69.5 Leg exercise 3 3 20 at 40% 1RM, 23’s/wk
for 12 wk

Increase in vV̇O2max
(ES: 0.61)

Small improvement
in 3k TT (P, 0.05)

ES5 effect size; F5 female; FCC5 freely chosen cycling cadence; HFLV5 high-force low velocity; HIEE5 high-intensity exercise endurance; LFHV5 low force high velocity; LIEE5 low-intensity
exercise endurance; M5male; MAP5maximal aerobic power; MAS5maximal aerobic speed; ME5movement economy; MP5mean power; NS5 no statistical change; OBLA5 onset of blood
lactate accumulation; PF5 peak force; PP5 peak power; ST5 strength training; TE5 time to exhaustion; TT 5 time trial performance; VMART 5maximal velocity in maximal anaerobic running
test; V̇O2max 5 maximal oxygen uptake; Wmax 5 peak power at V̇O2max.
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precise times of the training year “to
increase the potential to achieve spe-
cific performance goals” (79). This pro-
cess of chronologically manipulating

physiological adaptations is referred to
as periodization. Although varying defi-
nitions of this term have been proposed,
periodization has been most recently

defined as, “The strategic manipulation
of an athlete’s preparedness through the
employment of sequenced training
phases defined by cycles and stages of
workload” (22). Furthermore, if the train-
ing stimuli are sequenced appropriately,
each phase of training will enhance or
“potentiate” the next training phase
(15,79,81). This concept, referred to as
phase potentiation, is essential in the
development of endurance-specific per-
formance characteristics.

THE IMPORTANCE OF POWER IN
ENDURANCE SPORTS

The development of high-power out-
puts and high RFDs are vital to suc-
cess in most sporting events (76) and
can differentiate levels of athletic per-
formance (5,6,29). Maximal power out-
put and RFD have conventionally been
viewed as fitness characteristics that
are less important for endurance sports.
This is misguided, however, because
there is evidence indicating that

Figure 1. Factors affecting athletic performance, modified from Stone et al. (81).
Adapted, with permission, from M.H. Stone, M. Stone, and W.A. Sands,
2007, Principles and practice of resistance training (Champaign, IL: Human
Kinetics), 203.

Figure 2. Cross-country runner macrocycle.
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average power output over the course
of a long-distance race and maximal
power output during the final sprint
may be critical factors determining
the outcome of the event (56,58,80).

THE IMPORTANCE OF STRENGTH
IN THE DEVELOPMENT OF POWER

Power is defined as “the rate of doing
work” (40) and is quantitatively ex-
pressed as power 5 force 3 velocity
(55). Therefore, an athlete can either
achieve greater power outputs by
increasing the force production or by
increasing the shortening velocity capa-
bilities of skeletal muscle. It is important
to note, however, that skeletal muscle
shortening velocities are limited by the
activity of myosin ATPase, which ulti-
mately dictates the rate of cross-bridge
cycling through ATP dissociation (57).
Accordingly, this elucidates the vital role
of maximal strength in the development
of power (76). Simply put, an increased
ability to produce force provides the ath-
lete with the opportunity to enhance
power production.

TRAINING SEQUENCING FOR THE
ENDURANCE ATHLETE

SEQUENCE AND DURATION OF
TRAINING PHASES

Originally proposed by Stone et al. (78),
strength and power should be developed
by cycling 4 distinct phases of training:
strength-endurance, basic strength,
strength, and power (78). This model
of strength and power development, in
addition to the concept of phase poten-
tiation, has since been supported by
further evidence (30,52,93) and is also
referred to as block periodization (38)
or the conjugate-sequencing system
(90). A 4-week training phase has been
previously suggested, using the first 3
weeks to progressively load the ath-
lete, and the final week as an unload-
ing period to modulate recovery
(15,63,81). Although the duration of
the phase is dependent on the relative
training intensity, training volume, time
of the season, needs of the athlete, and
other external factors. Regardless of the
length of each training cycle, however, it
is important for practitioners to remem-
ber that the rate of decay, or involution

of training effects, seems to be directly
proportional to the length of the training
period (81,94). Consequently, proper
sequencing of training phases with
appropriate durations will enhance fit-
ness characteristics from prior stages
of training and make them more resil-
ient to decay. In addition, the subse-
quent training phase can be redirected
to focus on another fitness characteristic
to further the athlete’s preparedness and
dissipate accumulated fatigue from the
previous training cycle (81).

Although there are a number of sche-
matics to choose from when manipulat-
ing these variables, a traditional model
fits the previously described sequence
of strength and power development
(79,81). During the general preparation
phase, higher volumes of strength train-
ing should be used to enhance work
capacity and increase lean body mass
(15). Despite concerns over increases in
body mass, for many endurance athletes,
the general preparation phase is one of
the few times during the annual plan
where small increases in muscle hyper-
trophy can be achieved. This in turn will
potentiate gains in maximal strength and
power in subsequent phases of training.
As the athlete progresses from the gen-
eral preparation period to the specific
preparation and competition phases of
the macrocycle, strength training volume
is progressively diminished while training
intensity increases, as strength and power
become the primary fitness characteris-
tics of interest, respectively (38). Before
a culminating event in the competitive
season (e.g., championship race), the
peaking phase or taper requires “a reduc-
tion of the training load during a variable
period of time, in an attempt to reduce
the physiological and psychological stress
of daily training and optimize perfor-
mance” (53). After the peaking phase,
the athlete transitions into the off-
season with a period of active rest con-
sisting of recreational activities in which
both intensity and volume are reduced
and recovery is the objective (81).

TRAINING VOLUME AND
INTENSITY

The selection of appropriate training
volumes and intensities within each

training phase is vital in the facilitation
of the desired physiological response.
For endurance athletes with limited
strength training experience, a traditional
model is appropriate (79,81). These ath-
letes should begin with building a neuro-
muscular base using HFLV strength
training, and after a certain strength level
is achieved, LFHV strength training can
then be implemented (10). This is sup-
ported by evidence indicating that
among well-trained athletes, LFHV is
necessary to make further alterations
in the high-velocity end of the force-
velocity curve (30,77). Thus, HFLV and
LFHV strength training are both impor-
tant components in the endurance ath-
lete’s strength and conditioning program
provided they are included at the appro-
priate time and in the correct sequence
(Figure 2).

Regarding high-level endurance ath-
letes, however, the use of a traditional
model with a single peaking phase is
often impractical, as most athletes will
compete in multiple significant events
throughout the course of a competitive
season. Accordingly, manipulating vol-
ume and intensity to produce specific
physiological adaptations must coincide
with this competitive schedule (80).
Unlike the traditional model, after the
athlete completes the peaking phase
and competes in a key event of the sea-
son, further planning will be necessary to
prepare the athlete for future competi-
tions of importance (80,81). More spe-
cifically, if adequate time exists before
the next major event, strength training
volume may be increased to re-establish
strength levels (63,79). Conversely, if
time is insufficient, strength training vol-
ume should be increased cautiously to
avoid undue fatigue before the next con-
test (63,80,81).

EXERCISE SELECTION FOR THE
ENDURANCE ATHLETE

When selecting exercises for specific
phases of training, it is important for
practitioners and athletes to consider
the transfer of training effect. That is,
the degree of performance adaptation
that can result from a training exercise
(11,81). Therefore, choosing exercises
with similar movement patterns and
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kinetic parameters (e.g., peak force,
RFD, acceleration, etc.) will result in
a greater transfer to performance (11).
Although some endurance sport move-
ments have both closed and open
kinetic chain sequences, in movements
such as running, closed kinetic chain
exercises should be prioritized as they
have been suggested to require greater
levels of intermuscular coordination
(76) and result in greater performance
enhancement compared with open
chain movements (62,75). Traditional
squatting and weightlifting movements
are primary examples. Moreover, squat
strength has been strongly correlated to
athletic movements that require rela-
tively high-velocity, high-power outputs
and RFD (6,18). Weightlifting exercises
and their derivatives have also shown
a strong transfer of training to such
movements as well (4,16,37). Practically,
these exercises may assist with passing
an opponent, enhancing movement
economy, increasing average power out-
put, and sprinting the final 100 m of
a race (56,58,80). Considering the essen-
tial role that these exercises play in the
development of strength and power and
subsequent effects on HIEE and LIEE,
squatting and weightlifting movements
should be staples throughout the training
year for endurance athletes.

PRACTICAL APPLICATIONS

Previous research on concurrent train-
ing for endurance athletes suggests
that maximum strength is associated
with endurance factors, a relationship
that is likely stronger for HIEE activi-
ties than for LIEE. HFLV strength
training can affect increases in HIEE
and LIEE through increasing peak
force and RFD. LFHV strength training
has also been reported to elicit improve-
ments in HIEE and LIEE performance,
however, not all studies agree. When
considering findings from studies
examining changes in endurance per-
formance and related measures after
strength training, it seems that concur-
rent HFLV strength and endurance
training may provide superior results
compared with LFHV strength and
endurance training for relatively weak
endurance athletes. For endurance

athletes with more strength training
experience, a sequenced approach
(e.g., block periodized model) may
be more appropriate than trying to
improve strength, power, and endur-
ance simultaneously.

A limitation to the current research
exists in the design and implementa-
tion of training protocols. Some stud-
ies comparing different strength
training modalities fail to control for
differences in strength and endurance
training volume between experimental
conditions. Another limitation, only
controlled for in a few studies, is the
addition of strength training without
a simultaneous reduction in the vol-
ume of endurance training. Practically,
if applied in an athletic setting, this
could result in poor fatigue manage-
ment and an increased risk of
overtraining syndrome. The imple-
mentation of an annual training plan
where endurance and strength training
variables are carefully manipulated will
maximize athletic performance while
reducing injury risk by more appropri-
ately managing training volume.
Future research should examine the
effectiveness of monitoring programs
in determining when to manipulate
training variables throughout a macro-
cycle and the subsequent effects on
endurance performance.
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